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The advent of optogenetics has revolutionized experimental research in the field

of Neuroscience and the possibility to selectively stimulate neurons in 3D volumes

has opened new routes in the understanding of brain dynamics and functions. The

combination of multiphoton excitation and optogenetic methods allows to identify and

excite specific neuronal targets by means of the generation of cloud of excitation

points. The most widely employed approach to produce the points cloud is through

a spatial light modulation (SLM) which works with a refresh rate of tens of Hz. However,

the computational time requested to calculate 3D patterns ranges between a few

seconds and a few minutes, strongly limiting the overall performance of the system.

The maximum speed of SLM can in fact be employed either with high quality patterns

embedded into pre-calculated sequences or with low quality patterns for real time

update. Here, we propose the implementation of a recently developed compressed

sensing Gerchberg-Saxton algorithm on a consumer graphical processor unit allowing

the generation of high quality patterns at video rate. This, would in turn dramatically

reduce dead times in the experimental sessions, and could enable applications previously

impossible, such as the control of neuronal network activity driven by the feedback from

single neurons functional signals detected through calcium or voltage imaging or the real

time compensation of motion artifacts.

Keywords: multiphoton microcopy, wavefront control, optogenetics, computer generated holograms, spatial light

modulators, GPU (CUDA)

1. INTRODUCTION

The recent advances in the field of photonics (Pozzi et al., 2015) combined with methods of
molecular (Gandolfi et al., 2017) and genetic manipulation of the samples (Boyden et al., 2005;
Mutoh et al., 2012), have provided novel tools to investigate neural functions. Among these tools,
optogenetics allows to selectively stimulate specific neuronal subtypes within a three-dimensional
sample (Packer et al., 2013). Indeed, in order to avoid the stimulation of undesired out-of-focus
cells, multiphoton stimulation is required (Papagiakoumou et al., 2010; Dal Maschio et al.,
2017). The near-simultaneous stimulation of multiple cells heterogeneously distributed in three
dimensions can be achieved by time multiplexing with high-speed, inertia-free scanners (Wang
et al., 2011), but the only known method for truly simultaneous stimulation is the use of spatial
light modulators (SLM) (Packer et al., 2012).
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A coherent light source can be focused simultaneously in
an arbitrary pattern of diffraction limited focal points within
a three-dimensional volume through the use of a spatial light
modulator in the pupil of an optical system. In order to stimulate
areas wider than the diffraction limit, the technique can be
combined with either temporal focusing (Pégard et al., 2017),
or spiral or raster scanning (Packer et al., 2012, 2013). While
this method is widely used in optogenetics, it has a variety of
applications extending beyond the field of neuroscience and
including optical trapping (Grier and Roichman, 2006), high
throughput spectroscopy (Nikolenko et al., 2008; Gandolfi et al.,
2014; Pozzi et al., 2015), and adaptive optics (Pozzi et al., 2020).

A recent publication (Zhang et al., 2018) showed how
multiphoton optogenetics, applied in conjunction with
multiphoton calcium imaging, can be used to manipulate
in real time a network of neurons, for example clamping
their calcium activity to a given threshold, or forcing cells
to co-activate. However, due to the limitations in pattern
calculation speeds, the method can only control the stimulation
by alternating amongst a limited amount of pre-calculated
patterns. True, real-time feedback-based control of a network
would be greatly enhanced by the ability of calculating patterns
automatically on-the-fly as they are needed.

The requirements for real-time optogenetics manipulation of
calcium signals can vary widely depending on the optical setup,
experiment goals, species of interest, cell type, and brain region.
For the number of cells of interest and their distribution, at the
state of the art for in vivo imaging, random access multiphoton
microscopy was shown to be able to acquire signals from over
five hundred cells, within an approximately 300µm fov in all
three directions at 80 Hz (Katona et al., 2012) in visual cortex.
Other implementations showed performance in the same orders
of magnitude, for example Bessel scanning (Lu et al., 2017)
showed the activity of approximately one hundred GABA-ergic
neurons at 30 Hz in the same region. In alternative samples
and technologies, lightsheet microscopy in Zebrafish embryos
(Wolf et al., 2015) was shown to detect signals from tens of
thousands of neurons at 1 Hz from the whole embryo brain, and
its acquisition frequency could increase dramatically by reducing
the field of view.

As for the time resolution requirements, it mainly depends on
the accuracy required for the cell response to photostimulation,
as well as from the rise and fall time of calcium signals in the
neurons of interest. Those in turn strongly depend on the dye or
protein used for calcium imaging and on the cellular type of the
neurons stimulated. Rise times are known to be generally really
fast when photostimulation is activated, reaching a saturation of
the signal within a couple of hundreds milliseconds. As for decay
times, they are generally in the order of a second, but can go down
to a few hundreds milliseconds in some transgenic mice lines
(Dana et al., 2014). Even in the assumption of a calcium signal
decreasing quite slowly with an exponential decay time of 1 s
(corresponding to a complete return to baseline fluorescence in
approximately three seconds), a signal decrease of 10% happens
in the first 100 ms, which indicates the need for SLMmodulation
frequencies higher than 10 Hz for good optogenetic clamping of
the activity. At the very limit of such scenario, cerebellar granule

cells bulk stained with Fura-2 AM dye have been shown to have,
under electrical stimulation, calcium transients shorter than 200
ms from the onset to the return to baseline (Gandolfi et al., 2014),
and would therefore require millisecond-scale modulation of the
stimulation pattern for real-time control.

While the fields of view typical of high speed 3D calcium
imaging are generally within the operating capabilities of modern
SLMs, targeting hundreds of neurons with milisecond-scale
modulation is a challenging endeavor. While high performance
SLMs can refresh at up to hundreds of Hz, the algorithms used
for computing holograms constitute the current main limitation.

For two dimensional patterns, or patterns distributed on a
limited set of two-dimensional planes, relatively fast computation
times can be achieved by exploiting fast Fourier transform based
algorithms (Sinclair et al., 2004). However, the generation of an
arbitrary 3D pattern remains the main limiting factor in the
speed of operation for spatial light modulators, slowing the entire
experimental procedure, and precluding any form of real-time
update of three dimensional patterns. The generation of a three
dimensional focusing pattern requires estimation of the phase
value for each of the hundreds of thousands of pixels of the
spatial light modulator maximizing the quality of the obtained
pattern. The two most popular algorithms for this computation
are the high-speed, lower precision random superposition (RS)
algorithm, and the higher precision, lower speed Weighted
Gerchberg-Saxton (WGS) algorithm (Di Leonardo et al., 2007).
The RS computational cost scales linearly with M · N, where M
is the number of SLM pixels and N is the number of generated
foci, while WGS scales linearly with M · N · I, where I is the
number of iterations required. The quality of the hologram is
generally evaluated through its efficiency (e) and uniformity
(u), two metrics respectively indicating as a number between
0 and 1, the percentage of laser light actually focused in the
desired locations, and the uniformity of intensities between the
generated foci.

At the state of the art, when implemented with a typical
SLM resolution on a consumer computer processor unit (CPU),
RS can generate holograms with e > 0.2 and u > 0.2
in a few seconds, while WGS can generate holograms with
e > 0.9 and u > 0.9. Unfortunately, WGS requires a few
minutes for computation. Since most applications require faster
computation times, it is crucial to implement such algorithms on
faster time scales as it has been obtained by using a consumer
graphical processors (GPU) (Bianchi and Di Leonardo, 2010).
When implemented on a GPU, RS algorithm has been proved
to promptly generate arbitrary patterns at video rate (Reicherter
et al., 2006; Daria et al., 2009), but with its characteristic
low quality. Conversely, the WGS algorithm has proven to
produce high quality holograms at video rate, but only with
a limited number of SLM pixels (M < 7682) and on a very
low number of foci (N < 10) (Bianchi and Di Leonardo,
2010; Vizsnyiczai et al., 2014). Additionally, although WGS
results were published, no source code was openly released
with them. As a result, due to the intrinsic difficulty in
GPU coding, this profitable method has not yet been widely
adopted, and most researchers still perform WGS computation
on CPUs.
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We have recently proved (Pozzi et al., 2019), how, on a
CPU, a new algorithm (compressive sensing weighted Gerchberg-
Saxton, CS-WGS), applying the principles of compressed sensing
to the iterations of WGS can reduce its computational cost
asymptotically close to the cost of RS, while maintaining the high
quality of WGS holograms. Here, we present the implementation
of CS-WGS on a low-cost consumer GPU, demonstrating that the
algorithm is well-suited to GPU implementation, enabling video-
rate computation of holograms with e > 0.9 and u > 0.9 for
N < 100 and M < 1, 1522, ideally adaptable to feedback-based
optogenetic control of neuronal networks.

2. METHODS

2.1. Compressive Sensing Weighted
Gerchberg Saxton Algorithm
In both RS and WGS algorithms, the SLM phase pattern
80
(

x′, y′
)

generating a set of N foci at positions Xn = {xn, yn, zn}

with relative intensities ‖a0n‖
2
, is calculated as the phase of the

interference of the N wavefronts with known phase patterns
φn(x

′, y′) generating each spot independently, each with a set
phase delay θ0n :
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In the simple random superposition algorithm, 80 is simply
determined through Equation (1), selecting random values for θ0n .
In the weighted Gerchberg-Saxton algorithm, the values of θn are
determined through a series of alternating projections between
the SLM space and the spots’ positions. The algorithm begins by
computation of the RS hologram80 through Equation (1). At the

j-th iteration, the field E
j
n of each spot is calculated as:

E
j
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where ‖A
(

x′, y′
)

‖2 is the distribution of light intensity at the slm
surface, and � is the set of all SLM pixels coordinates. At this
point the values of θn and an are updated as:
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where w
j
n are weight factors, all initialized at 1 for the first

iteration. The updated values of a
j
n and θ

j
n are used to compute

a new hologram8j with Equation (1) and start the next iteration.
The CS-WGS algorithm is equivalent to WGS, but the

summation in Equation (3) is only performed over a subset

�
j

compressed
of randomly distributed pixels on the SLM for

N − 2 iterations, followed by two full iterations to ensure full
convergence and the computation of phase on all SLM pixels.
Conversely the value of the hologram phase can be computed, for

all iterations except the last two, only for the pixels in �
j

compressed
.

Through this adaptation, CS-WGS scales in computational cost
linearly with 2 · M · N + c(M · N · (I − 2)), where c is the ratio

between the sizes of �
j

compressed
and �.

The performance of all three described algorithms can be
computed through the metrics of efficiency (e), uniformity (u),
and variance (v). Efficiency is computed as the fraction of power
effectively directed at the spots locations:

e =
∑

n

In (7)

where In is the fraction of laser intensity directed to the n-th spot.
The uniformity metric is defined as:

u = 1−
maxn(Fn)−minn(Fn)

maxn(Fn)+minn(Fn)
(8)

where Fn is the ratio between the achieved and desired power
fractions at the n-th spot:

Fn =
In

∑

n′ In′
/

‖a0n‖
2

∑

n′ ‖a
0
n′‖

2
(9)

Finally, the variance metric is expressed as the mean square
relative error in the power fractions:

v =

∑

n (Fn − 1)2

N
(10)

The efficiency metric reports on the actual fraction of power
directed to the spots. It should be noted that the power
fraction not directed to the spots is rarely uniformly distributed
throughout the sample, and generally forms undesired excitation
spots. The metric should therefore be as close to the value of 1 as
possible to avoid undesired artifacts, and low values can not only
be compensated by an increase in laser power.

The uniformity metric should also be as close to 1 as
possible. Lower values reveal the presence of significant outliers
in the spots intensities, which can lead to missing excitation of
targeted cells, or to local photodamage in over-illuminated cells.
Finally, the variance metric defines the general deviation of spots
intensities from their desired values, and should be as close to
0 as possible in order to achieve precise control of power over
all generated spots. Precise control of intensities is crucial for
optogenetics stimulation, as the relative power between spots
should be carefully regulated in order to prevent non-optically
sectioned stimulation due to thermal effects (Picot et al., 2018).
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2.2. GPU Implementation
GPU implementations of algorithms should be carefully
developed in order to fully exploit the parallelized calculation
performance of the devices. We report here some considerations
about the implementation.

2.2.1. Global Memory Allocation
When implementing GPU code, minimization of memory
transfer between the system memory and the GPU global
memory is critical to achieve optimal performances. RS, WGS,
and CS-WGS are all very well suited algorithms for this specific
requirement, as the hologram specific inputs required are limited
to the 3D coordinates of the desired spots and their desired
intensities, as well as a single floating point value for the required
compression factor c for CS-WGS. As most SLMs are connected
to calculators as secondary monitors directly connected to the
GPU, no readout of the algorithm’s output to system memory
is necessary, but the hologram is directly projected on the SLM
through CUDA-OPENGL interoperability.

Additionally, some fixed parameters characterizing the
physical and geometrical properties of the SLM and the optical
system (e.g., the coordinates x′, y′ of the SLM pixels, the phase
to gray scale lookup table of the SLM output), are uploaded
to the GPU only once at startup and used for all holograms
computed during an experimental session. Such initialization
does not therefore affect the speed of the algorithm convergence.

2.2.2. Backwards Propagation of RS and WGS
Given, for each spot, the values of the desired coordinates and

intensitiesXn, a
0
n, weightsw

j
n and phase terms θ

j
n, at each iteration

the hologram phase is computed according to Equation (1). Each
of the parallel threads of the GPU evaluates the equation for one
of the M pixels of the SLM, performing the summation over
all spots. Counter-intuitively, the values of φn are computed at
each iteration according to Equation (2), instead of computed
once and stored in global memory, as their direct computation
is significantly faster than accessing values stored in the GPU
global memory.

The obtained hologram 8j is stored in a pre-allocated section
of global memory, or, in case of the last iteration, copied to an
OpenGL texture buffer, and projected on the SLM surface. It
should be noticed that vertical synchronization in the OpenGL
environment should be enabled, in order to avoid artifacts
during the alternation of different holograms on the SLM. As a
consequence, the total time required for the last iteration will be
extended until the next refresh of the SLM screen.

2.2.3. Forward Propagation of RS and WGS
Given an hologram 8j, and the known intensity distribution of
light at the SLM surface, the field at each spot can be computed
through Equation (3), which therefore requires the sum of M
complex numbers per each spot. This sort of computation is
known in GPU programming as a dimensionality reduction, and
is performed by using k threads to iteratively perform the sum
of M/k elements of the sum, until the amount of elements to
be summed equals one. Since a modern GPU can run 1,024
threads in one block, and the number of SLM pixels in the

system aperture is <1,0242, the dimensionality reduction always
converged in two iterations for the presented results.

2.2.4. Compressed Sensing
During initialization, all arrays containing data referring to SLM
pixels (e.g., hologram phase, known intensity at the pupil) are
reorganized in a randomly selected order. At each iteration
only c · M GPU threads are employed both for forwards and
backwards projection, performing computation on pixels which
will be adjacent in GPU global memory for optimal performance,
but randomly distributed in the pupil due to the random
reorganization. Only the backwards projection at the very last
iteration is performed on all pixels, in order to compute the
phase of the full hologram. The actual position in the pupil for
each pixel is stored during initialization in an additional array in
global memory, and used at the end of the computation to apply
the correct phase values to the correct OpenGL texture pixels
for projection.

2.3. Experimental Setup
Holograms were computed on a budget desktop GPU (GTX1050,
Nvidia), also available in several mid-range laptops. Experimental
results were obtained by measuring two-photon excited
fluorescence from a solid, 1.7 mm thick fluorescent slide (FSK-2,
Thorlabs, USA) on a custom system for multiphoton imaging
and optogenetics. The system includes an SLM with a refresh
frequency of 31 Hz, and a panel of 1,152 × 1,920 pixels, with
pixel pitch of 9.2µm (Meadowlark, USA), with the short side
optically matched to the round aperture of the optical system,
limiting hologram computation to a round sub-region of 1,152
pixels in diameter.

The source employed is a Ti:Sa laser (Chameleon Ultra II,
Coherent, USA), tuned to 800 nm, expanded through a telescope
of two infrared achromatic doublets (AC-127-050-B andAC-254-
250-B, Thorlabs) to a beam waist radius of 6 mm at the SLM
panel. A simplified scheme of the setup is shown in Figure 1.

The spatial light modulator (SLM) surface is conjugated to a
couple of silver coated galvanometric mirrors (GM, GVS-012/M,
Thorlabs, USA) by a 4-f beam reducing telescope of two infrared
achromatic doublets (L1 and L2, AC-508-200-B and AC-508-
150-B, Thorlabs). A custom made glass slide with a 0.5 mm
round deposition of titanium is placed in the focal plane of the
first lens in order to block the 0-th order of diffraction of the
SLM while minimally affecting the projected pattern. We were
in fact unable to measure any differences in spots intensities
when adding and removing the blocker. The Galvanometric
mirrors are conjugated through a beam expanding 4-f telescope
of broad spectrum achromatic doublets (L3 and L4, AC-508-
180-AB and AC-508-400-AB) to the back aperture of a water
dipping microscope objective (OL, XLUMPlanFL N, 20X, 1.0
NA, Olympus, Japan). In this configuration, a phase-conjugated
image of the SLM is produced on the back aperture of the
objective with a magnification of 5 : 3, so that the 10.6 mm side
of the SLM is matched with the 18 mm aperture of the objective.

Fluorescence light is reflected by a longpass dichroic mirror
(DM, FF665-Di02-25x36, Semrock, USA) and further filtered
from laser light through an IR-blocking filter (FF01-680/SP-25,
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FIGURE 1 | Scheme of the optical setup for the reported experiments. Not to

scale. Red lines show the excitation light path, green lines represent the

fluorescent light path after descanning. SLM - Spatial light modulator. L1-L2 -

First 4f telescope. GM - Galvanometric mirrors. L3-L4 - Second 4f telescope.

OL - Objective lens. DM - Dichroic mirror. L5 - Focusing lens. CCD - Detector

camera.

Semrock, USA). The mirrors are conjugated by a couple of 4-f
telescopes of visible achromatic doublets and a custom channel
splitter (not shown) with a mounted 12 − 72 mm, 1.2f # zoom
lens (L9, Cosina, Sony, Japan), mounted on a high speed, 128 ×

128 pixels EMCCD camera (CCD, Hnu 128 AO, Nuvu, Canada).
The focal and aperture of the camera zoom lens are chosen in

order to image a field of view of 400µm × 400µm for two color
channels in 64× 64 pixels subregions of the camera sensor, while
maintaining a depth of field of 400µm in order to visualize three-
dimensional patterns without defocus aberrations. Focusing
of the laser in the fluorescent slide generates two-photon
fluorescence, the intensity of which increases quadratically
with local power, and is therefore an appropriate reporter
of the stimulation intensity which could be achieved in a
biological sample.

Measurements were performed at approximately 300µm
depth within the fluorescent slide, in order to avoid spots
generated at high axial distances from the focal plane to
be focused outside the sample. The galvanometric mirrors
were operated in a 50µm wide constant speed spiral scan at
120 Hz throughout the experiments, in order to minimize
photobleaching effects, as well as compensating for local
inhomogeneities of the fluorescent slide. The descanned nature
of the detection light path insured that the motion of the mirrors
did not affect the shape of the spots at the detector.

3. RESULTS

In order to compute convergence timing for RS, WGS, and CS-
WGS algorithms, two types of holograms were computed: regular
two-dimensional grids of uniform spots, considered as a worst
case scenario for pattern uniformity, and a more realistic random
distributions of spots of varying intensity within a cubic volume
of 200µm. Grids were calculated for square patterns from 4 to
144 spots. Random distributions were calculated from 9 to 99
spots. Lower amounts of spots were not considered, as SLMs
have generally unreliable performance independently from the
algorithm used when generating very few spots. If possible, in
such situation, other excitationmethods should be preferred (e.g.,
acousto-optic scanners). Amaximum performance reference was
computed through 200 iterations of WGS. Holograms for the
same distributions of points were then calculated with RS, with
WGS, and with CS-WGS for compression factors ranging from
2−1 to 2−8. WGS and CS-WGS computations were repeated
for an increasing number of iterations, until a uniformity value
higher than a target percentage of the maximum performance
was reached. Figure 2 shows the timings required for full
convergence of the algorithms, as well as a comparison between
the uniformity performances achieved by the non-iterative RS
compared to the iterative algorithms. Only the best performing
value of the compression factor in CS-WGS is reported for each
data point. For these results, vertical synchronization of the GPU
with the SLM screen was disabled, in order to present data
unaffected by the specific hardware employed. The data reported
clearly shows how, in any of the presented scenarios, CS-WGS
greatly outperforms WGS, with generally half the convergence
time, and up to a factor 5 speedup when computing holograms
for regular lattices of high numbers of spots. This, while being an
unlikely pattern for optogenetics experiments, is often required
for imaging or optical trapping applications.

While still significant, the lowest performance advantage of
CS-WGS over WGS, was observed for random distributions of
small numbers of spots (<50) for relatively low performance
targets (<92% of full convergence uniformity) for which WGS
converged in only two iterations, leaving small space for
improvement with the application of compressed sensing. In this
situation, WGS still resulted 1.5 times slower than CS-WGS.

It should be noticed how, while a GPU implementation of
RS remains up to an order of magnitude faster than iterative
algorithms, the uniformity of the patterns produced can be
extremely low for any number of spots, and this algorithm should
only be used when the experimental scenario requires extremely
high computation speed for a very high number of spots.

A more realistic utilization scenario for high speed hologram
computation, however, is one in which the full convergence
performance is sacrificed in order to achieve computation times
equivalent to the refresh rate of the SLM, in order to update
the hologram on-the-fly as fast as the hardware allows it. Fixed
refresh rate performance of RS, WGS, and CS-WGS algorithms
was measured both through calculation of the theoretical
efficiency and uniformity of the patterns, and by visualization of
multiphoton fluorescence excitation in the experimental setup.
In these measurements, vertical synchronization of the GPU
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FIGURE 2 | Performance comparison of the algorithms when computing patterns at a set fraction of the full convergence uniformity.

with the SLM screen was enabled, as it is required for correct
experimental application. The SLM used for data validation was
capable of a refresh rate of 31 Hz. However, hologram computing
times were constrained to a refresh rate of 15 Hz, as it was
experimentally found that, while operating at the SLM limit of 31
Hz, the quality of the projected pattern was strongly dependent
on the pixel response times of the SLM at the experimental
wavelength, and comparison of experimental data resulted
difficult. The performance of CS-WGS was computationally
tested for a range of compression rates c from 2−1 to 2−8. The best
performing compression rate for the uniformity metric was used
for experimental comparison. An additional set of measurements
for full convergence of WGS was added in order to provide a
reference for the best achievable pattern quality without frame
rate constraints.

Tests were performed in three critical scenarios for multi-
foci real-time computation. The first two were two-dimensional,
regularly spaced, grids of points rotating in 3D space,
representing a worst-case scenario for pattern uniformity. The
two grids differ in number of total spots, one is a grid of 100 spots,

for which WGS could only perform a single iteration within the
64 ms frame time limit, the other is a more limited 36 spots grid,
for whichWGS could achieve 5 full iterations. The third scenario
was a more realistic distribution of 100 points in a random
pattern, within a cubic volume of side 300µm, with randomly
distributed target intensities.

The computed efficiencies and intensities achievable with a 15
Hz frame rate are reported in Figure 3. Error bars were calculated
from the standard deviation of the mean performance over
10 calculations with different initial values of θ0n and different
spatial orientations of the patterns. It can be observed how, for
a large amount of regularly spaced spots, WGS has practically no
advantage over RS, due to the limited amount of iterations which
can be performed within the time limit.

The performance of WGS improve for smaller amounts of
spots and less regular patterns, but CS-WGS still stands out as the
better performing algorithm in all scenarios. Low compression
rates of CS-WGS tend to prioritize uniformity, due to their
better sampling of the pupil, while high compression rates tend
to prioritize efficiency due to the higher number of iterations
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FIGURE 3 | Performance comparison of the algorithms when computing in real time at 15Hz in selected scenarios. The legend is valid for all graphs. RS results for the

100 points random distribution has been omitted as out of a reasonable graph scale at e = 0.554± 0.004, u = 0.0245± 0.004 and v = 0.44± 0.22. Similarly, the

CS-WGS uniformity for the same pattern at 2−8 compression was omitted, scoring u = 0.46± 0.17. RS computation times were approximately 25ms for 100 spots

patterns, and 12ms for 36 spots patterns. Error bars report standard deviation.

achievable. Nonetheless, unless extreme compression factors
were used for spots patterns with varying intensities, CS-WGS
provides better performance than WGS in all tested scenarios.
Results equal or similar to a fully converging implementation
of WGS could be achieved in all tested scenarios for well-tuned
compression factors.

Since experimental systems are non-ideal, often the
performance of the computed patterns can be affected by
the experimental setup (Palima and Daria, 2006). In order to
prove the improvement in performance provided by CS-WGS is
detectable and significant in experimental scenarios, we provided
verification of the results of Figure 3 on the setup described in
the methods section.

Experimental results are reported in Figure 4. All holograms
show a decrease in signal intensity toward the edges of the
frame, due to the loss in diffraction efficiency of the SLM
at the edges of its addressable volume, which is independent

from the algorithm’s performance. Images are reported with
a 10X upscaling with bilinear filtering in order to reduce
aliased sampling artifacts due to the sensor’s low resolution.
For each experimental scenario, 10 different variants of the
pattern were computed by rotating the grids in three dimensions
and rearranging the spots random distribution. In order to
estimate the intensity of the spots, a blob detection algorithm
was run over images acquired from the camera, integrating the
pixels intensities within the blob. blob locations and sizes were
estimated over the average of 10 images of the WGS pattern
with full convergence and used to compute intensities for the
other algorithms. The relative error of each spot’s intensity was
computed from the ratio of its blob intensity compared to that
of the fully converging WGS pattern. It should be noticed the
intensity detection error on a fixed pattern could get up to 5%
root mean square, depending on the intensity of the spot. As
expected, RS performed the worst, with average errors of 0.47 ±
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FIGURE 4 | Experimental results, each columns shows representative images for each scenario. Scale bar is 100µm. Scale bar and intensity colorbar are equivalent

for all images. It should be noticed how, qualitatively, CS-WGS patterns are practically indistinguishable from full convergence WGS patterns. Significant artifacts can

be observed in the grid patterns for both RS and WGS. Significant artifacts are visible for RS in the random spots distribution, while WGS qualitatively seems to

perform well. On the bottom row, histograms of the detected spots intensity accuracy over 10 images are shown. It should be observed how CS-WGS does actually

outperform significantly WGS, with no spots over 0.25 relative error, while WGS presents outliers up to 0.4.

0.30 for the 36 spots grid, 0.32 ± 0.11 for the 100 spots grids,
and 0.17 ± 0.02 for the random patterns. When constrained
to 64 ms of computation time, WGS performed similarly to
RS when computing the 100 spots grid, with an average error
of 0.28 ± 0.03, due to its inability to perform more than two
iterations in the given time. It performed better for the 100 spots
random pattern and the 36 spots grid (respectively 0.03 ± 0.02
and 0.16± 0.03 relative errors). Still, CS-WGS proved to provide
the best performance in all scenarios, with average errors of
0.08 ± 0.01 for the 36 spots grid, 0.06 ± 0.03 for the 100 spots
grids, and 0.02±0.01 for the random patterns. More importantly
the highest outliers for all patterns for RS reached relative errors
of 0.8, meaning the spot was either almost completely missing
or nearly twice as bright as it should have been. Outliers for WGS
reached up to 0.8 for the 100 points grid, up to 0.6 for the 36 spots
grid and up to 0.4 for the random distribution. Conversely, in all
scenarios CS-WGS managed to keep all spots under 0.25 relative
error. Computing the same pattern multiple times with different
initialization phases led to similar statistics in error distributions.
Most importantly, the outlier spots would be positioned in
random, unpredictable positions within the pattern.

It should be noted how for the worst case scenario of regular
grid patterns, significant deviations from the desired patterns
can easily be noticed in the intensity distributions of RS and
WGS, while CS-WGS seems indistinguishable from the desired
pattern, as highlighted by the numerical metrics. In the random
distribution pattern, RS is still visibly inaccurate, while WGS and

CS-WGS seem to perform equivalently. However, the numerical
metrics highlight how CS-WGS holograms present smaller
deviations from the desired pattern, and therefore provide the
best achievable performance within the time constraint.

Examples of real time manipulation of the patterns are
available as Supplementary Materials, showing the selected
patterns rotating in three dimensions through real-time
recalculation. The videos show how smooth live update of the
hologram is possible, with reasonably constant performance
throughout the experiment.

From the results, it is apparent that the compression factor
and number of iterations can be fine-tuned to achieve maximum
performance. However, this is often not possible for real
time generation of generic patterns with varying numbers
of spots or geometrical distribution. In such a situation, a
compression factor between 1/8 and 1/16 seems to provide a
good baseline value to achieve reliable performance in a variety
of experimental conditions.

4. DISCUSSION

In this manuscript a GPU implementation of the CS-WGS
algorithm is presented, and benchmarked against the two most
popular alternatives available, being RS and WGS. The results
clearly show how the higher convergence speed of CS-WGS,
makes it the ideal candidate for real-time applications. The
GPU implementation of the algorithm proves, for real time
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applications, absolutely necessary, as similar spots patterns to
those tested would require several seconds for computation
with CS-WGS (Pozzi et al., 2019), and up to several minutes
with WGS.

While the presented experimental tests were limited by the
refresh rate of the available SLM, the algorithm could easily
be used to control even faster systems, provided a reasonable
amount of spots is selected, and the compression factor is tuned
accordingly. The ability of computing high quality holograms
in real time could enable real-time, feedback-based control
of neuronal networks, driven by calcium (Lu et al., 2017) or
voltage activity (Gandolfi et al., 2015) without being limited to
stimulation on pre-calculated spatial patterns.

As an example of the advantages of real-time computation
compared to the use of pre-computed patterns in closed loop
stimulation, keeping N cells clamped at the same level of
activity through pre-computed patterns by binary switching of
photostimulation on each cell, would require pre-calculation of
patterns stimulating all possible combinations of at least one of
the N cells. In practice, this means that 2N − 1 patterns would
be required, limiting the applicability of the experiment to only a
very few neurons.

A similar consideration can be made for the possibility of
synchronizing the activity of cell populations to a single “trigger
neuron.” For N selected trigger neurons, at least 2N patterns
would need to be calculated, or more if any neuron would need
to be coupled with two separate trigger neurons.

It should be acknowledged that fast photoswitching of single
points in a given fixed pattern can be achieved by the use of a
digital micromirror device in the image plane (Go et al., 2013) to
modulate intensity. However, this is still limited in the number
of available patterns in the DMD memory (a few tens to a few
hundreds, depending on the hardware used), has limited axial
positioning extent (only ±10µm in the reported publication),
it would not work for spots located at similar lateral positions
but at different axial depths, and in general requires significant
modifications to a standard SLM based setup, when compared to
a simpler modification of software. Moreover, due to the accuracy
of our algorithm in the modulation of power of single spots,
even stimulation based on analog modulation of the excitation
power for each spot, instead of a binary on/off behavior, could
be implemented.

Independently from closed loop photostimulation, an
immediate outcome of this implementation lies in the extreme
streamlining of the experimental procedure, practically
eliminating any waiting time between the selection of the
point of interests and the experimental procedure. Of note, it
can be extremely useful for in-vivo recordings with awake mice.
In these circumstances, experiments are in fact extremely time-
sensitive, and the minimization of the experiments duration is of
utmost importance.

Furthermore, the newly introduced ability of updating the
pattern in real-time at the SLM refresh speed limit can

potentially enable previously impossible experimental protocols.
For instance, the correction ofmotion artifacts, which is currently
performed only through the use of scanners and focus actuators,
for rigid linear movements (Vladymyrov et al., 2016), could be
enabled for sample rotations and non rigid deformations through
SLM patterns adaptation.

Since GPU programming is not a widespread practice
amongst the optics and neuroscience research community,the
software used to generate the results presented in the paper is
made available as a free and open-source library (Pozzi, 2020)
for non commercial purposes, to ensure a widespread adoption
of the method. The software library is compatible with all SLMs
controlled as external screen, and is not necessarily limited
to 64 ms computation time. Some modifications to the code
may be required to directly drive SLMs with dedicated pci-e
interfaces. The software consists in Python (Van Rossum and
Drake, 1995) code controlling the GPU using CUDA (Nickolls
et al., 2008) through the PyCuda (Klöckner et al., 2012) library
and rendering holograms directly to the SLM through the GLFW
OpenGL framework.
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