Get a quote
Products > Cameras > HNü 128 – 128 x 128 EMCCD

HNü 128 – 128 x 128 EMCCD

Built for high frame rates

Achieve sub-millisecond exposures with continuous frame rates and single-photon sensitivity.

Get a quote

Outstanding SNR performances

Operation rate up to 1460 fps full frame
< 0.004 ē/pixel/frame background noise
EM gain up to 5000
Air-cooling down to -60°C

The EMCCD camera optimized for speed

Frame rates exceeding 1460 fps in full frame

Made for high-speed applications such as Adaptive Optics (AO) and neural and cardiac imaging, the HNü 128 camera exceeds expectations, with unmatched sensitivity thanks to Nüvü’s patented electronics. With virtually no noise in each image, this EMCCD enables highly efficient low-flux imaging – allowing faster acquisitions while maintaining superior image quality.

Typical spectral response as a function of wavelength, as provided by the EMCCD detector manufacturer

Highest quantum efficiency

The HNü 128 integrates the high QE (up to 95%) typical to high-end EMCCD detectors. Coupled with Nüvü’s patented electronics for the lowest background noise and the highest EM gain, this HNü 128 camera is ideal for ultra-fast imaging in photon-counting conditions.

The HNü 128 EMCCD camera is also available with UV-enhanced detectors or a UV Lumogen® coating for higher quantum efficiency in the UV spectral range.

HNü 128 benefits for photon counting imaging

Different models for increased versatility

Nüvü offers the HNü 128 in both Gamma and Omega variants to suit different requirements. With a 30 MHz readout speed, the Omega model reaches higher frame rates, while the Gamma model supports slower but more sensitive readout rates. With unmatched performances across the board, pick the best model for your project.

mROI on NüPixel Software

Features for faster acquisition

  • Crop Mode
  • Fast Kinetics Mode
  • Time-Delay Integration (TDI) Mode
  • Multiple Region of Interest (mROI) & ROI

Designed for easy integration

The user-friendly HNü camera provides many advantages to efficiently bridge the gaps between purchase, setup and discoveries.

The HNü camera is a compact and easy-to-use device with a Windows or Linux operating system. To allow quick and easy integration into any system, all standard HNü cameras come with a C-mount optical interface, imperial and metric mechanical holes on the faceplate, and standard holding posts on the sides of the camera. For fast and reliable image data transmission, the HNü camera communication interface are either Gigabit Ethernet or Camera Link. A built-in shutter enhances detector longevity, allows dark frame acquisitions, and is remotely controllable with our software tools for all application requirements.

Options available

Further customize the camera to your requirements for improved performances in your measurement contexts and increased versatility. A variety of options are available.

See options

Related publications

Read more on new researches and science enabled by this innovative scientific camera.

Fully integrated services

NüPixel Software
Software tools

NüPixel control, acquisition and analysis software

Software development kit (SDK) for customizable programming

Various drivers available for commercial software

Windows & Linux compatibility

Worldwide professional customer support

In addition to an intuitive user manual for the easy installation and use of our products, Nüvü Camēras offers international on-site training as well as complete consulting services. Our team’s passion is the development of the ultra low-light imaging field; as such, we provide a variety of services to efficiently minimize the delay between purchase and discoveries.

Speak with our team

Nüvü Camēras is a Canadian company specialized in designing and manufacturing novel low light imaging cameras for fields where the drive for cutting edge instrumentation propels innovation. We improve imaging performance for a number of fields including biomedical research, astronomy, photonics and more. As such, our cameras benefit from extended warranty policies. Basic product warranty includes 2-year on all parts and labor (subject to the terms and conditions expressed in the respective products’ user manuals).

Extended warranty options also available.

Darker EMCCD — Less noise

The darkest EMCCD cameras are manufactured by Nüvü Camēras. The secret? The CCD Controller for Counting Photons (CCCP), an innovative technology that virtually suppresses clock-induced charges (CIC), and a cooling Peltier unit integrated into an ingenious packaging. The thermoelectrically cooled HNü camera operates between -60 and -90°C with outstanding precision to optimize CIC and dark current to their ground level. The images below illustrate the accumulation of dark current when the shutter is closed. The darker the image, the less noise is present.

With Nüvü Camēras' EMCCD technology With Nüvü Camēras' EMCCD technology
Acquisition conditions: -85 °C cooling, 10MHz readout speed, EM gain of 5000 for Nüvü Camēras, and 1000 for other EMCCD manufacturers.

No pixel leaking, superior image quality

At high readout speeds, the electron transfer from one potential well to the next may be incomplete, leaving a few charges behind. Consequently, the leftover electrons artificially increase the brightness of certain pixels, thereby diminishing the overall image quality with the addition of arbitrary blurry spots. However, Nüvü Camēras’ CCCP preserves charge transfer efficiency (CTE), even at low operating temperature and increased EM gain, while decreasing CIC, yielding highly superior image quality.

Nüvü Camēras EMCCD technology Nüvü Camēras EMCCD technology
Acquisition conditions: -85 °C cooling, 10MHz readout speed, EM gain of 5000 for Nüvü Camēras, and 1000 for other EMCCDs.

New standard for photon-counting imaging cameras

As stated in its name, Nüvü Camēras’ proprietary CCD Controller for Counting Photons was purposely designed for photon-counting imaging. As such, no noise-filtering algorithms are used. The amount of noise generated is simply lower, eliminating the risk of removing genuine photoelectrons.

Resorting to arbitrary clocks rather than regular square clocks to shift the electrons through the EMCCD, the CCCP clamps down the generation of clock-induced charges and significantly reduced the detector’s total background noise. Consequently, the EMCCD ability to discriminate single-photon events is considerably increased, and the camera can effectively operate in photon-counting mode as long as the background noise is low.

In extreme cases where the expected intensity is about a single photon per pixel per second or even less, the photon counting (PC) mode is the ideal solution to obtain high-quality images. By eliminating the excess noise factor (ENF) and using a statistically significant threshold, pixels are individually analyzed to determine whether or not they truly detected a photon despite various noise sources.

Displayed below are images of extremely dim light sources — low concentration bioluminescent samples — and illustrate the power of photon-counting imaging in such conditions. All figures are courtesy of the Université de Sherbrooke Hospital Centre.

Single 30 seconds acquisition in conventional (CCD) mode. No details are visible where we should have seen several bioluminescent ATP samples.

Applying electron multiplication to suppress the readout noise reveals the bioluminescent ATP samples in 5 seconds. As such, all six ATP concentrations are detectable with SNR values varying from 1.9 to 14.1 (or, equivalently, 2.8 dB to 11.5 dB).

Photon counting mode with an EMCCD increases the contrast of all ATP samples by suppressing the excess noise factor (ENF), thus allowing considerable improvements in image quality. The SNR increases from 6.6 to 51.3 (equivalent to a range of 8.2 dB to 17.1 dB).

Ready to count Photons?

Any questions about EMCCD or low light imaging? Nüvü Camēras experts can provide advices on your low light imaging options.

Get a quote now
About us
This site is registered on as a development site. Switch to a production site key to remove this banner.